Creating Lists and Grids

Table of Contents

List and Grid Nodes
Lists and Grids
Iltem Focus and Selection
Specifying List and Grid Content
List and Grid Layout Options
Wrapping, Fixed and Floating Focus
Custom Item Definitions and Focus Indicators
® RowList Node Class
® Custom Focus Indicators
® Optimizing the Rendering Performance of Lists and Grids
® Optimizing Lists and Grids with Multiple Item Sub-Elements
® Optimizing Grids with Different Sized or Large Poster Items

Lists and grids are important screen elements for the application user interface. Lists and grids allow the user to choose from a selection of items
that, for example, can include the title of movie to rent or purchase, and a graphic image of the theater poster for the movie. The SceneGraph API
allows you to include several data items for each item in the list or grid, such as the price to rent or buy the movie, and to display this information to
the user when the user selects the item.

List and Grid Nodes

The following are the list and grid node classes supplied by Roku as part of the SceneGraph API:

LabellList
MarkupList
PosterGrid
MarkupGrid
RowList
CheckList
RadioButtonList

These list and grid node classes are derived from the abstract base class ArrayGrid. Most of the fields described in the reference information for
each list or grid node class are described in the ArrayGrid reference information, though sometimes with slightly different field names.

Lists and Grids

Lists are a single column of items arranged vertically. Grids are multiple columns of items arranged both vertically (for the items in the column), and
horizontally (for the rows of items across the columns).

Items are indexed by list and grid nodes based on their position in the ContentNode node that defines each item in the list or grid (see Specifying
List and Grid Content). The first item defined in the ContentNode node is assigned index 0, the second item is assigned index 1, and so forth.
The ContentNode node index determines the position of the item in the list or grid, depending on how you define the list or grid.

For lists, the index starts at O for the item at the top of the list, and increments for each item lower in the list:

https://sdkdocs.roku.com/display/sdkdoc/LabelList
https://sdkdocs.roku.com/display/sdkdoc/MarkupList
https://sdkdocs.roku.com/display/sdkdoc/PosterGrid
https://sdkdocs.roku.com/display/sdkdoc/MarkupGrid
https://sdkdocs.roku.com/display/sdkdoc/RowList
https://sdkdocs.roku.com/display/sdkdoc/CheckList
https://sdkdocs.roku.com/display/sdkdoc/RadioButtonList
https://sdkdocs.roku.com/display/sdkdoc/ArrayGrid
https://sdkdocs.roku.com/display/sdkdoc/ContentNode

Roku SDK 2.0 Documentation

For grids, the index starts at 0 for the item at the top left corner of the grid, and increments for each item to the right in the grid row, and when the
end of a row is reached, increments for the left-most item in the next lower row, and continues incrementing from left to right and top to bottom for
each row in the grid. For example, if you specified a 3-column grid (by setting the nuntCol umms field to 3 as described in List and Grid Layout

Options), the index would increment as follows:

SceneGraph also provides another type of list/grid node class, RowList, that combines aspects of both lists and grids. See RowList Node Class fo
r information about this hybrid node class.

ltem Focus and Selection

Automatic remote control focus and selection of items by the user is provided by list and grid nodes. When a list or grid has remote control focus, a
specific item in the list or grid has focus at any time. A list or grid node automatically responds to remote control direction pad Up and Down key
presses for lists, and Up, Down, Right, and Left key presses for grids, by moving focus to the next item in that direction in the list or grid. When an
item is focused, the user can select the item by pressing the OK key. Read-only fields are provided by the list or grid node class to indicate the
index number of the item that is focused, unfocused after being focused, or selected at any time, allowing an application response to these user
actions in the list or grid. The read-only list or grid fields that provide this information are:

Read-Only Field Changed Value Indication
i t enfFocused The list or grid item is currently focused by the user.

i temUnf ocused The list or grid item was focused by the user, but the user moved the focus to another item.

PRELIMINARY 2

Roku SDK 2.0 Documentation

itenBel ected The list or grid item was selected by the user by pressing the remote control OK key.

You can use the Qbser veFi el d() interface function for the list or grid node to trigger a callback function in response to changes in these fields.
For example, the following calls a di spl ayepi sodei nf o() function that could provide additional information to the user as the focus moves to an

item in a list of TV program episodes:
m epi sodel i st. ObserveFi el d("it enfFocused", "di spl ayepi sodei nf 0")

Likewise, if the user selects the item by pressing the remote control OK key, you can write a pl ayepi sode() callback function triggered by the i t
entel ect ed field event to begin playback of the selected episode:

m epi sodel i st. ObserveFi el d("itentel ected", " pl ayepi sode")

Since the index number for each item is the position of each child item in the ContentNode node that defines the list or grid, you can use them to
retrieve data from the child ContentNode node associated with the item (or also from parallel arrays you have created for this purpose). This allows
you retrieve the data needed to write the callback functions that are triggered by the list or grid item field changes. For example, the following
accesses TV episode data in the ContentNode node for a list using the get Chi | d() interface function taking the i t enfFocused field value as the
argument, as part of a callback function to display TV episode information for the focused episode list item:

epi sodei nfo = m epi sodel i st. content. get Chi |l d(m epi sodel i st.itenFocused)

The list or grid node class also provides options for automatically indicating to the user that focus is on an item. The item can have a different color,
or a bitmap drawn on the item, to indicate focus. The list or grid node class includes default 9-patch PNG bitmaps that surround the selected item,
as well as an automatic text color change for lists of label items, but you can also customize these focus indicators for your design. The fields used

to customize these options are:

Focus Option Field Use

dr awFocusFeedback Specify whether the focus graphic image is drawn on a focused item or not

dr awFocusFeedbackOnTop Specify whether the focus graphic image is drawn on top or underneath the focused item

focusBi t mapUri Specify a custom graphic image to be drawn on the item to indicate focus

focusFoot printBi t mapUri Specify a custom graphic image for a focused item when the list does not have currently have focus
f ocusedCol or Sets the text color of the focused list item, for LabelList nodes only

f ocusedFont Sets the font of the focused list item, for LabelList nodes only

If you want a custom focus indicator that cannot be defined using these fields, you should use one of the node classes described in Custom Item
Definitions and Focus Indicators.

Specifying List and Grid Content

The items included, and some of their display configuration, for a list or grid node class is specified by setting a ContentNode node as the value of
the cont ent field of the list or grid node. The parameters of each item in a list or grid is specified as a child ContentNode node of the ContentNo

de node specified in the cont ent field.

The easiest way to do this is by reading the content data from an XML or JSON file, either from an application package file or a file downloaded
from your server. Then use the BrightScript or the BrightScript component parsing functions to parse the data in a loop that creates the ContentNo
de node and child ContentNode nodes, and assign the resulting ContentNode to the cont ent field of the list or grid. For examples, see:

® ContentNode Description for the general procedure using the roSGNode interface functions

® Task Example for a specific code example of configuring a ContentNode node for a LabelList node using a Task node

® Downloading Server Content also shows the server (or application package) XML file for the same example, and how the ContentNode
node is assigned to the LabelList node

PRELIMINARY 3

https://sdkdocs.roku.com/display/sdkdoc/ContentNode#ContentNode-Description
https://sdkdocs.roku.com/display/sdkdoc/Task#Task-Example
https://sdkdocs.roku.com/display/sdkdoc/Downloading+Server+Content

Roku SDK 2.0 Documentation

® ContentNode Example also shows how to manually set up a ContentNode node for a LabelList node in BrightScript

List and Grid Layout Options

You have many options for arranging and displaying the items in a list or grid. Specific options depend on the type of list or grid you want to display.

For all lists and grids, you can specify a default size of the items in the list or grid. You can also specify the default spacing between each item in
the list or grid. But you can also override the default size and spacing of items that you have set with individual sizes and spacings for each item in
the list or grid. The fields to control these options are:

® jtenfi ze or basePost er Si ze (for list or grid items that are posters)

® rowHei ghts

® col umW dt hs

® itenBSpacing

® rowSpaci ngs

® col umSpaci ngs

For all lists and grids, you can specify the number of visible item rows for the list or grid by setting the numRows field, but the actual number of rows
will always depend on the number of items in the list or grid, as specified by the ContentNode node set as the value of the cont ent field for the
list or grid node. For grids, you can specify the number of item columns, by setting the nuntCol umms field.

Lists and grids can also be divided into sections, and each section can have an icon, a label, and other customizable elements to visually divide the
list or grid sections. The list or grid node class includes default section divider bitmaps. To divide your list or grid into sections, you must create a
child ContentNode node for each section in your ContentNode node specified in the cont ent field, that includes the child ContentNode nodes
for each list or grid item in the section.

The fields to set the appearance of section dividers are:

secti onDi vi der Font

secti onDi vi der Text Col or
sectionDivi derBi t mapUri
secti onDi vi der Spaci ng
secti onDi vi derWdth
secti onDi vi der Hei ght
sectionDi viderM nW dt h
sectionDivi derLeft O f set

Wrapping, Fixed and Floating Focus

In addition, you have two options for how the list or grid operates as the user presses the direction pad keys. You can have a list or grid with the
items or grid rows scroll into a fixed focus area as the Up and Down direction keys are pressed. When the user reaches the last or first item or grid
row, the list or grid wraps back to the first or last item or grid row. Or you can have the focus move up, down, left, and right in the list or grid. The
fields to set these options are:

® hori zFocusAni mati onStyl e
® vert FocusAni mati onStyl e

If thelist or grid is set to wrap when thefirst or last item is reached, the list or grid node provides a default visual divider element between thefirst and last items
that can be customized. The fields used to customize the wrap divider element are:

® wrapDivi derBi t mapUri
® wrapDividerWdth
® wrapDi vi der Hei ght

PRELIMINARY 4

https://sdkdocs.roku.com/display/sdkdoc/ContentNode#ContentNode-Example

Roku SDK 2.0 Documentation

Custom Item Definitions and Focus Indicator s

The RowList, MarkupList, and MarkupGrid node classes provide the ultimate flexibility to present lists and grids with fully-customized item appearance and
focus indicators. These node classes allow you to create a custom component for list or grid items to define whatever appearance and behavior you want for your
application. If you want to have several posters with multiple labelsin each list or grid item, and animate them to appear and disappear as the item is focused and
unfocused, you'll want to use these customizable list/grid node classes.

The key to customizing these node classesis to create custom item definitions in a component XML file. Y ou define al the screen elements you need for your
custom list/grid items in this item component file, such as posters, labels, rectangles, and so forth. Then you can create custom appearance and behavior for the
items by writing callback functions triggered by onChange eventsin the <interface> element fields you select for the item. These customizable list/grid node
classes provide a much greater selection of built-in <interface> element fields than those provided by the standard list/grid node classes. These additiona fields
allow you program custom appearance and behavior of the item, such as custom animations when the user focuses/sel ects the items.

The additional read-only <interface> element fields for item components in these customizable lists and grids are:

wi dt h

hei ght

i ndex

focusPer cent

|'i st HasFocus (MarkupList node class only)
gri dHasFocus (MarkupGrid node class only)

When thelist or grid is created, an instance of the item component is created for each item node definition included in the ContentNode node for the list or grid.
Each one of these item instances can then respond according to the scriptsincluded in the item component file as user or other program events occur, by triggering
callback functions in the item component.

RowList Node Class

The RowL ist node classis a special list/grid node class that mixes aspects of both lists and grids. A RowL ist node component consists of a set of one or more
rows of items, each of which, when focused, scrolls horizontally as the user presses the Right or L eft keys to focus on itemsin the row. Itemsin other rowsin the
list do not scroll along with the focused row as they would for agrid. To focus on another row, the user presses the Up and Down keys to select the row, as they
would to focus on itemsin alist.

The RowL ist node class has additional fields for the row focused/selected, the entire RowL ist hode focused, the item focused/selected in arow, and a 2-element
array field type indicating the selected item in afocused row. The additional read-only fields are:

r ow ndex

r owFocusPer cent
rowHasFocus
rowLi st HasFocus

The additional read-only 2-element fields containing the item focused/sel ected are:

® row t enfFocused
® row t entel ect ed

Thefirst element of these field arrays contain the index of the focused/sel ected row; the second element contains the index of the focused/selected item in the
focused row.

Custom Focus Indicators

The RowList, MarkupList, and MarkupGrid node classes provide specia <interface> fields for item component definitions that enable animations to indicate
focus changes to the user. Thef ocusPer cent field can be used with an onChange attribute callback function to animate focus indicators as focus moves from
itemtoitem. Thef ocusPer cent field isthe fractional value, from 0.0 to 1.0, of atime delay after focus has moved from one item to the next. The fractional
valueincreases incrementally from 0.0 to 1.0 for the newly-focused item, while simultaneously decreasing from 1.0 to 0.0 for the previously-focused item. For
example, to enlarge a poster slightly when the item receives focus, while simultaneously shrinking the poster of the previously focused item, you could set up an <
interface> element f ocusPer cent field onChange callback function showf ocus() intheitem component XML file:

PRELIMINARY 5

https://sdkdocs.roku.com/display/sdkdoc/RowList
https://sdkdocs.roku.com/display/sdkdoc/MarkupList
https://sdkdocs.roku.com/display/sdkdoc/MarkupGrid

Roku SDK 2.0 Documentation

<interface>

<field id="focusPercent" type="float" onChange="showfocus" />

</interface>

<script>
<! [CDATA[

sub showf ocus()
scale = 1 + (mtop.focusPercent * 0.08)
mitenposter.scale = [scale, scale]

end sub

The RowL ist node class aso includes ther owFocusPer cent field to allow animating a focus indicator when the user focuses on an item in an adjacent row,
either above or below the previously-focused row.

Optimizing the Rendering Performance of Listsand Grids

There are two advanced methods to optimize the rendering speed of complex lists and grids.

Optimizing Listsand Gridswith Multiple Item Sub-Elements

Listsand grid items can contain several sub-elements (such as rental/purchase prices, MPAA rating icons, and so forth) that can be drawn on top of or adjacent to
the item. The default method of drawing list or grid itemsisto render al of the items and any sub-elements in one rendering operation. For complex lists or grids
with several sub-elements drawn for each item, this default method may render the list or grid slowly. To increase the performance of rendering complex lists and
grids, thereisa special field in list and grid nodes, nunmRender Passes, that controls the rendering of the list or grid items in conjunction with ther ender Pas
s field of the item sub-elements.

If you decide to optimize the performance of complex lists and grids, you must set up a sequence of rendering of the list or grid item sub-elements, so all the
sub-elements for the items render in sequential order rather than in one rendering operation. To do this, decide which sub-elements to render in which order of a
sequence of rendering operations. For example, the main poster for an grid item may have alabel and a smaller poster drawn on top of it. Y ou can specify that the
main poster will render first, the label second, and the smaller poster third, by setting ther ender Pass field value for each of these sub-elementsto 1, 2, and 3,
respectively. Then you set the grid nunRender Passes field value to 3, the total number of rendering operations for the grid.

Be very careful when setting the list or grid nunRender Passes and the item sub-element r ender Pass field values. If you set the nunR
ender Passes field to a value greater than 1, any list or grid item sub-element r ender Pass field value that is set to O (the default), or to
a value greater than the nunRender Passes field value, will not render.

Optimizing Grids with Different Sized or Large Poster Iltems

You can optimize the rendering speed of grids that have poster items of several different sizes, or are very large, by setting the grid useAt | as field
value to false. The field value toggles the use of a texture atlas that stores the posters in the grid. The default is t r ue, since in many cases, most of
the posters in the grid have the same size as determined by the grid basePost er Si ze field value. In this case, using the texture atlas can provide
a rendering performance benefit. For grids that have more complicated layouts, that include several posters that have sizes that differ from the
value of basePost er Si ze, or for grids where there are only a few large posters (about five to eight, or posters that are about a quarter of the
screen height or width) displayed at the same time, setting this field to f al se may provide faster rendering speed of the grid.

PRELIMINARY 6

	Creating Lists and Grids

